目的 研究蜘蛛香炮制品的化学成分及其抗炎活性。
方法 采用正相硅胶柱色谱、羟丙基葡聚糖凝胶(Sephadex LH-20)、ODS和高效液相色谱(HPLC)等多种分离材料和方法进行分离纯化,通过理化性质及波谱数据鉴定化合物结构,采用脂多糖(LPS)诱导的RAW264.7细胞体外炎症模型,以总一氧化氮合成酶抑制剂(L-NMMA)作为阳性对照,对化合物进行体外抗炎活性评价。
结果 从蜘蛛香炮制品的乙酸乙酯相共分离鉴定了25个化合物,分别为(3
S,4
R,5
S,7
S,8
S,9
S)-3,8-环氧-7-羟基-4,8-二甲基全氢环戊基[
c]吡喃(1)、(3
S,4
S,5
S,7
S,8
S,9
S)-3,8-环氧-7-羟基-4,8-二甲基全氢环戊基[
c]吡喃(2)、去酰基缬草醛(3)、缬草醛(4)、8-羟基-7′-表松脂醇(5)、(+)-表松脂醇(6)、青刺尖木脂醇(7)、 (7
R,8
S,7′
R,8′
S)-5-甲氧基青刺尖木脂醇(8)、(-)-松脂醇(9)、绿原酸(10)、橙皮素(11)、3,8-二羟基-2-甲基色原酮(12)、penicisochroman J(13)、2,5-二(4-羟基-3-甲氧基苯基)-1,4-二
![]()
烷(14)、4,4′-二羟基-3,3′-二甲氧基-反式-1,2-二苯乙烯(15)、对苯二酚(16)、4-羟基-3-甲氧基苯甲醛(17)、乙酰香草酮(18)、4-羟基-3-甲氧基桂皮醛(19)、2,3-二羟基-1-甲氧基苯(20)、5-羟甲基-2-呋喃甲醛(21)、5-乙酰糠醇(22)、5-[(5-(hydroxymethyl)furan-2-yl)methoxymethoxymethyl]furan-2-carbaldehyde(23)、5-({5-[(5-(hydroxy methyl)furan-2-yl)methoxy(methoxymethyl)]-furan-2-yl} methoxy(methoxymethyl)) furan-2-carbaldehyde(24)和6-羟基-2
H-吡喃-3-醛(25)。其中,化合物3,15,16和19均能够显著抑制RAW264.7细胞中脂多糖诱导的一氧化氮生成,且呈显著的剂量依赖性,表现出潜在的抗炎活性。
结论 炮制后的蜘蛛香化合物结构类型涉及环烯醚萜及其降解产物、苯丙素、黄酮、色原酮、芳香衍生物和糠醛衍生物等。在炮制过程中,主要是环烯醚萜和单糖的结构发生了变化;化合物 5、6、9~25均为首次从蜘蛛香中分离得到,其中,化合物3,15,16和19具有抗炎活性,半数抑制浓度(IC
50)值分别为29.04、10.77、6.37和10.98 μmol·L
-1。
Abstract
OBJECTIVE To study the changes of chemical constituents and anti-inflammatory activity of the processed products of Valeriana jatamansi Jones. METHODS By means of various chromatographic METHODS, such as silica gel, Sephadex LH-20, ODS and HPLC, 25 compounds were isolated from the EtOAc-soluble fraction of processed Valeriana jatamansi. The structures of the compounds were identified by physicochemical properties and spectral data. The in vitro inflammatory model of RAW264.7 cells was induced by lipopolysaccharide (LPS), and the anti-inflammatory activity of the compounds was evaluated using total nitric oxide synthase inhibitor (L-NMMA) as positive control. RESULTS Their structures were elucidated as (3S, 4R, 5S, 7S, 8S, 9S)-3, 8-epoxy-7-hydroxyl-4, 8-dimethylperhydrocyclopenta[c]pyran (1), (3S, 4S, 5S, 7S, 8S, 9S)-3, 8-ethoxy-7-hydroxy-4, 8-dimethylperhydrocyclopenta[c]pyran (2), deacylbaldrinal (3), baldrinal (4), 8-hydroxy-7′-epipinoresinol (5), (+)-epipinoresinol (6), prinsepiol (7), (7R, 8S, 7′R, 8′S)-5-methoxyprinsepiol (8), (-)-pinoresinol (9), chlorogenic acid (10), hesperetin (11), 3, 8-dihydroxy-2-methyl-chromone (12), penicisochroman J (13), 2, 5-di(4-hydroxy-3-methoxyphenyl)-1, 4-dioxan (14), 4, 4′-dihydroxy-3, 3′-dimethoxy-trans-1, 2-stilbene (15), hydroquinone (16), 4-hydroxy-3-methoxybenzaldehyde (17), acetovanillone (18), 4-hydroxy-3-methoxycinnamaldehyde (19), 2, 3-dihydroxy-1-methoxybenzol (20), 5-hydroxymethyl-2-furancarboxaldehyde (21), 5-acetylfurfuryl alcohol (22), 5-[(5-(hydroxymethyl)furan-2-yl)methoxymethoxymethyl]furan-2-carbaldehyde (23), 5-{5-[(5-(hydroxymethyl)furan-2-yl)methoxy(methoxymethyl)]-furan-2-yl} methoxy(methoxymethyl)) furan-2-carbaldehyde (24) and 6-hydroxy-2H-pyran-3-carbaldehyde (25). CONCLUSION The structural types include iridoids and their degradation products, phenylpropanoids, flavonoids and chromones, aromatic derivatives and furfural derivatives, which indicates that the structures of iridoids and monosaccharides have changed in the process of processing. Compounds 5,6,9-25 are isolated from Valeriana jatamansi Jones for the first time. In addition, compounds 3,15,16 and 19 have anti-inflammatory activity with IC50 values of 29.04, 10.77, 6.37 and 10.98 μmol·L-1, respectively.
关键词
蜘蛛香 /
缬草属 /
炮制品 /
化学成分 /
抗炎活性
{{custom_keyword}} /
Key words
Valeriana jatamansi Jones /
Valeriana /
processed drug /
chemical constituent /
anti-inflammatory activity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] National. Administration of Traditional Chinese Medicine, Editorial Board of Chinese Materia Medica. Chinese Materia Medica(中华本草) [M]. Vol.7. Shanghai:Shanghai Scientific & Technical Publishers, 1999:575-576.
[2] Editorial Board of Flora of China, Chinese Academy of Sciences. Flora of China (中国植物志) [M]. Vol 73. Beijing:China Science Publishing & Media Ltd.(CSPM), 1986:28-29.
[3] LAN M. Southern Yunnan Materia Medica(滇南本草) [M]. Vol 2. Kunming:Yunnan People′s Publishing House, 1977.
[4] LI S Z. Compendium of Materia Medica(本草纲目) [M]. Vol 2. Beijing:People′s Medical Publishing House, 1979:845.
[5] Ch.P(2020) VolⅠ(中国药典2020年版. 一部) [S]. 2020:385.
[6] LI J, LIU J, QIAO L, et al. Simultaneous determination of three components in Valeriana jatamansi by HPLC [J] Chin Pharm J (中国药学杂志), 2014, 49(20):1840-1844.
[7] CHEN S Y, FU Y, YU L N, et al. HPLC fingerprint and chemical pattern recognition of Valeriana jatamansi. [J] Chin Pharm J (中国药学杂志), 2019, 54(6):489-493.
[8] DONG F W, WU Z K, YANG L, et al. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells [J]. Phytochemistry, 2015, 118:51-60.
[9] YONG Y, HUANG Q, WANG R J, et al. Study on the chemical constituents of Valeriana jatamansi Jones [J]. Chin Tradit Herb Drugs (中草药), 2015, 46(23):3466-3470.
[10] LIN S, CHEN T, LIU X H, et al. Iridoids and lignans from Valeriana jatamansi [J]. J Nat Prod, 2010, 73(4):632-638.
[11] VERMA R S, VERMA R K, PADALIA R C, et al. Chemical diversity in the essential oil of Indian Valerian (Valeriana jatamansi Jones) [J]. Chem Biodiv, 2011, 8(10):1921-1929.
[12] TANG Y P, LIU X, YU B. Two new flavone glycosides from Valeriana jatamansi [J]. J Asian Nat Prod Res, 2003, 5(4):257-261.
[13] LIU H. Studies on iridoids and their bioactivities from Valeriana jatamansi Jones [D]. Kunming:Kunming University of Science and Technology, 2020.
[14] LIN S, CHEN T, LIU X H, et al. Iridoids and lignans from Valeriana jatamansi [J]. J Nat Prod, 2010, 73(4):632-638.
[15] CHEN Y G, YU L L, HUANG R, et al. 11-Methoxyviburtinal, a new iridoid from Valeriana jatamansi [J]. Arch Pharm Res, 2005, 28(10):1161-1163.
[16] YAN S D, YAO H L, ZHANG Y H, et al. Chemical constituents from Spiraea salicifolia [J]. Chin Tradit Herb Drugs (中草药), 2016, 47(16):2806-2811.
[17] WANG W, LIU X H, GAO H, et al. Chemical constituents from aerial parts of Clematis manshurica [J]. Chin Tradit Herb Drugs (中草药), 2014, 45(17):2440-2446.
[18] PICCINELLI A L, ARANA S, CACERES A, et al. New lignans from the roots of Valeriana prionophylla with antioxidative and vasorelaxant activities [J]. J Nat Prod, 2004, 67(7):1135-1140.
[19] CHEN J J, WEI H B, XU Y Z, et al. Antioxidant lignans from the roots of Vladimiria muliensis [J]. Planta Med, 2013, 79(15):1470-1473.
[20] MINH C V, NHIEM N X, YEN H T, et al. Chemical constituents of Trichosanthes kirilowii and their cytotoxic activities [J]. Arch Pharm Res, 2015, 38(8):1443-1448.
[21] WENG Y X, CHEN X H, LIU Z H, et al. Chemical constituents of chlorogenic acids from the dried leaves of L. similis Hemsl. [J]. J Anhui Agric Sci(安徽农业科学), 2011, 39(27):16566-16568.
[22] ADHIKARI-DEVKOTA A, ELBASHIR S M I, WATANABE T, et al. Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and α-glucosidase inhibitory activities [J]. Nat Prod Res, 2019, 33(11):1670-1673.
[23] YANG X L, XUE X Y, LIN Y, et al. Chemical constituents from the moutan cortex charcoal and their potential coagulation activities [J]. J Chin Pharm Sci(中国药学 英文版), 2018, 27(9):608-616.
[24] BUNBAMRUNG N, INTARAUDOM C, BOONYUEN N, et al. Penicisochromans from the endophytic fungus Penicillium sp. BCC18034 [J]. Phytochem Lett, 2014, 10:13-18.
[25] LI Y D. Studies on the chemical constituents of Valeriana jatamansi and its processing [D], Kunming:Kunming University of Science and Technology, 2011.
[26] LU D, LIU J P, ZHAO T Z, et al. Chemical composition of the ground parts of Dioscorea nipponica Makino(Ⅱ) [J]. Chin Tradit Herb Drugs (中草药), 2010, 41(5):700-703.
[27] LÓPEZ C, CLARAMUNT R M, ELGUERO J, et al. Oxalic acid/phenols andoxalic acid/cholesterol co-crystals:a solid state 13C CPMAS NMR study [J]. Arkivoc, 2008, (iv):33-46.
[28] ITO J, CHANG F R, WANG H K, et al. Anti-AIDS Agents.48.1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian Propolis [J]. J Nat Prod, 2001, 64(10):1278-1281.
[29] LUO J R, MA Q Y, ZHAO Y X, et al. Palaeophytochemical components from the miocene-fossil wood of Pinus griffithii [J]. J Chin Chem Soc, 2009, 56(3):600-605.
[30] CARPINELLA M C, GIORDA L M, FERRAYOLI C G, et al. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components [J]. J Agric Food Chem, 2003, 51(9):2506-2511.
[31] FLEISCHHACKER W, RICHTER B, URBAN E, et al. Synthese von cotarnin-iodid [J]. Monatshefte für Chemie, 1989, 120(8):765-769.
[32] PYO M K, JIN J L, KOO Y K, et al. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects [J]. Arch Pharm Res, 2004, 27(4):381-385.
[33] MEHNER A, MONTERO A L, MARTINEZ R, et al. Synthesis of 5-acetoxymethyl-and 5-hydroxymethyl-2-vinyl-furan [J]. Molecules, 2007, 12(3):634-640.
[34] FOTSO S, MASKEY R P, SCHRÖDER D, et al. Furan oligomers and β-carbolines from terrestrial Streptomycetes [J]. J Nat Prod, 2008, 71(9):1630-1633.
[35] ABDEL-HALIM O B, MARZOUK A M, MOTHANA R, et al. A new tyrosinase inhibitor from Crinum yemense as potential treatment for hyperpigmentation [J]. Pharmazie, 2008, 63(5):405-408.
[36] LI S H, YAN Z Y. Research of iridoids from Valeriana jatamansi Jones [J]. Chin J New Drug (中国新药杂志), 2012, 21(6):633-637.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(31560103, 32060106)
{{custom_fund}}